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Abstract. Scaling properties of the Gibbs distribution of a finite-size one-dimensional Ising model are
investigated as the thermodynamic limit is approached. It is shown that, for each nonzero temperature,
coarse-grained probabilities of the appearance of particular energy levels display multiscaling with the
scaling length ` = 1/Mn, where n denotes the number of spins and Mn is the total number of energy
levels. Using the multifractal formalism, the probabilities are argued to reveal also multifractal properties.

PACS. 05.50.+q Lattice theory and statistics (Ising, Potts, etc.) – 05.70.-a Thermodynamics – 64.10.+h
General theory of equations of state and phase equilibria – 68.35.Rh Phase transitions and critical
phenomena

1 Introduction

The structure of complex objects is usually studied by
means of statistical methods involving coarse-grained
probability measures assigned to pieces of the ob-
jects [1–3]. These measures can exhibit singularities as the
length scale of the piece size tends to zero. The underlying
scaling behavior of the measures can display a simple form,
when the singularity strength (the Hölder exponent) pos-
sesses a single value, or can reveal complicated properties,
when the singularities run over continuous spectra. In the
latter case, complex scaling properties of the probability
measures are called multiscaling [4,5]. As well known, a
given measure characterized by a spectrum of singularities
can be divided into submeasures, each associated with a
particular value of the singularity exponent and each sup-
ported, in general, by a fractal set. If singularities char-
acterizing such subsupports and their dimensions spread
continuously over some ranges, then the support of the
whole probability measure form the so-called multifrac-
tal. It should be pointed out, however, that multiscaling
does not always imply multifractality [5].

The probabilistic approach to characterize complicate
objects by studying scaling properties of singular measures
associated with these objects has widely been used, no
matter of their origin, and irrespective of the way of defin-
ing or generating their coarse-grained measures. In partic-
ular, the approach has been applied to analyze the scaling
behavior of temperature-dependent probability measures
(Gibbs distributions) of finite-size, two-dimensional Ising
systems [6]. Clearly, these probability measures are sup-
ported by discrete spectra of energy levels. For a given
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finite-size system of n spins, the number of energy levels
is Mn ∼ n. Accordingly, the support of the probability
measure determined for a system of n spins can be cov-
ered by Mn segments, and the length scale characterizing
the measure can be assumed to be ` ∼ 1/Mn [6]. The
resulting scaling exponents are dependent on the temper-
ature variable. It has been shown that Gibbs distribu-
tions of two-dimensional systems reveal specific multifrac-
tal structures, and that the structures are related to some
thermodynamic properties of these systems [6]. However,
calculations of singularity spectra for Gibbs distributions
involve rates of energy degeneracies and, thereby, in cases
of two-dimensional (and higher-dimensional) Ising mod-
els, the calculations can be performed only for rather small
systems. Thus, in order to investigate the question of mul-
tiscaling properties of Gibbs distributions of spin systems
more thoroughly, one must resort to a more simple model,
for which degeneracy rates can exactly be determined.

Here, scaling properties of the Gibbs distribution of a
one-dimensional Ising system are examined. For this sys-
tem, degeneracies of energy levels are exactly known for
each n, and thereof scaling properties of the probability
measure can be studied systematically for very large n.
Consequently, it will be exactly shown the existence of
the phenomenon of multiscaling in the system. An argu-
mentation for the occurrence of the multifractality will
also be presented.

2 Singularities of the Gibbs distribution

Consider a zero-field Ising system on a one-dimensional
lattice with periodic boundary conditions. The spin vari-
ables si = ±1, i = 1, 2, ..., n, are taken to be coupled
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by nearest-neighbor interactions J . For simplicity, the to-
tal number of spins will be assumed to take only even
values. The reduced energy spectrum of the system of n
spins is then given by

E
(n)
i (K) = (n− 4i)K , i = 0, 1, ...,Mn − 1, (1)

with the reduced interactionK = J/kBT , where T denotes
the temperature, and with

Mn =
n

2
+ 1 (2)

being the total number of energy levels. The normalized
probability that the system occupies the ith energy level
is determined by

p
(n)
i (K) =

2
Zn(K)

(
n

2i

)
e(n−4i)K (3)

with the partition function

Zn(K) = 2
Mn−1∑
i=0

(
n

2i

)
e(n−4i)K

= (2 coshK)n + (2 sinhK)n. (4)

It follows from (2) and (3) that, for energy levels of suffi-
ciently low degeneracies, the respective probabilities decay
as powers of e−n. However, for the energy levels of high
degeneracies, the probabilities can be expected to decay
more slowly. This can easily be seen by using the Stir-
ling approximation for the degeneracy factor in (3). Then,
setting

2i = rin , i = 0, 1, ...,Mn − 1, (5)

with the rational numbers 0 ≤ ri ≤ 1, one has

ln[p(n)
i (K)] = nS(K, ri)

−1
2
{lnn+ ln[ri(1− ri)]− ln(2/π)}, (6)

where

S(K, ri) = (1− 2ri)K − hn(K)
−ri ln ri − (1− ri) ln(1− ri) (7)

with

hn(K) = ln(2 coshK) +
1
n

ln[1 + (tanhK)n]. (8)

Representing the rational numbers ri for each K by

ri = a(K) + bi(K)

√
lnn
n

+ gi(K,n),

i = 0, 1, ...,Mn − 1, (9)

where a(K), bi(K), gi(K,n) are, in general, irrational
numbers, such that

a(K) =
1

e2K + 1
, (10)

bi(K) are finite, independent of n, and

gi(K,n)/

√
lnn
n
→ 0 (11)

as n→∞, yields

S(K, a) =
1
n

ln[1 + (tanhK)n]. (12)

Hence, one derives

ln[p(n)
i (K)] = −αi(K) lnn+O(ε(K,n)), (13)

where

αi(K) =
1
2

(
1 + 4b2i (K)(coshK)2 +

ln[ri(1− ri)]
lnn

)
, (14)

and ε(K,n) is the largest of terms of orders
√

lnn
n and

gi(K,n)
√
n lnn. Using (3) and (13), one can easily verify

that the minimum value of αi(K) is given for K = 0 by
αm(0) = 1

2 , where m = n/4 if n = 4j (with j taking
on positive integer values), while m = (n + 2)/4 when
n = 4j + 2. Since rm = 1

2 for n → ∞ (see Eq. (5)), the
relation (14) implies that bm(0) = 0 in the thermodynamic
limit. However, for sufficiently large K, the minimal value
of αi(K) is associated with i � Mn. According to (3)
and (13), in the limits n→∞ and K →∞, this minimal
value is α0(∞) = 0. Since for i�Mn ri is of the order of
1/n, it follows from equation (14) that lim

K→∞
b0(K)eK = 0.

Thus, as n → ∞, the probabilities p(n)
i (K) satisfy for

each finite K the scaling law

p
(n)
i (K) ∼

(
1
Mn

)αi(K)

(15)

with the scaling length being assumed to be `n ∼ 1/Mn

rather `n ∼ 1/n, because Mn is (for each n) the total
number of elements of the support of the probability mea-
sure. The discrete index i in (15) is restricted to take those
values which are determined by (5, 9, 10), and the con-
dition (11). If the condition (11) is not satisfied for some

i and if gi(K,n)/
√

lnn
n → ∞ as n → ∞ (with gi(K,n)

being finite), then, for each finite K, the exponents αi(K)
are dependent on n and tend to infinity when n grows, vi-
olating the scaling law (15). Similarly, the scaling law (15)
is not fulfilled if the requirement (10) does not hold. Con-
sequently, for n� 1, the largest length scale of the proba-
bilities p(n)

i (K) is `n ∼ 1/Mn. Clearly, the smallest length
scale is determined by `n ∼ e−n. Accordingly, all possible
length scales that decay more rapidly than `n ∼ 1/Mn as
n→∞ emerge when a(K) and/or gi(K,n) do not satisfy
conditions (10) and (11), respectively. Note that, since ri
are defined as belonging to a unit interval, all gi(K,n)
must remain finite as n→∞.
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Fig. 1. The generalized dimension Dq(K) vs. q for q ≥ 0,
K = 0.1, and n = 5× 103, 10× 103, ..., 30× 103.

Detailed analysis of the scaling behavior of p(n)
i (K) can

be performed in a standard way, by investigating proper-
ties of the generalized partition function (cf. [1,7,8])

χn(q,K) =
Mn∑
i=1

[p(n)
i (K)]q , (16)

where q ∈ (−∞,∞). For q ≥ 0, this function is expected
to scale in the limit n→∞ as

χn(q,K) ∼
(

1
Mn

)(q−1)Dq(K)

(17)

with the generalized dimensions Dq being dependent on
K. It should be pointed out, however, that D0(K) = 1
for all K. This reflects the fact that, according to (1), the
support of the entire probability measure is uniform for all
K. The dependence of Dq(K) on q for q ≥ 0, K = 0.1, and
various n is shown in Figure 1. It is seen that Dq(K) con-
verges rapidly as n increases. In Figure 2 the dependence
of Dq(K) on q ≥ 0 is presented for n = 106 and for diverse
values of K. Note, that Dq(0)→ 1

2 and Dq(∞)→ 0 when
q grows. Since D∞(K) =min{αi(K)} [1], this is in agree-
ment with the predictions, based on the relation (14), that
min{αi(0)} = 1

2 and min{αi(∞)} = 0. The visible depen-
dence of Dq on q provides a strong evidence of the multi-
scaling property [4] of the probabilities p(n)

i (K) associated
with the largest length scale `n ∼ 1/Mn and related to
highly degenerated energy levels E(n)

i (K) with the index
i determined by (5, 9–11). Clearly, the continuous spectra
Dq(K) are connected in the limit n → ∞ to continuous
spectra of the Hölder exponents α(q,K) [1].

As mentioned above, the smallest length scale of the
probabilities p(n)

i (K), corresponding to energies of low de-
generacies, is given by `n ∼ e−n rather than by `n ∼
1/Mn. Hence, the partition function χn(q,K) is assumed
to satisfy for q < 0 and n� 1 the scaling relation

χn(q,K) ∼ e−n(q−1)D̄q(K) (18)
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Fig. 2. Dq(K) vs. q ≥ 0 for K = 0, 1, ..., 8 and n = 106.
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Fig. 3. The generalized dimension D̄q(K) vs. q < 0 for K =
0.1 and n = 50, 100, ..., 350.

with the generalized dimensions D̄q(K) defined for q < 0.
The dependence of D̄q(K) on q illustrates Figure 3 for
K = 0.1 and for various n. This figure displays the con-
vergence of D̄q(K) as n is increased. The dependence of
D̄q(K) on q for n = 200 and for varied values of K is
shown in Figure 4.

3 Multifractal behavior of the Gibbs
distribution

This section discusses the question whether the multi-
scaling property of the probability measure p(n)

i (K) im-
plies a multifractal structure of the support of the mea-
sure. As follows from (1), the coarse-grained support of
this measure is spread over a discrete spectrum of energy
levels, belonging to a range, which tends to infinity as
the thermodynamic limit is approached. Thus, a possi-
ble multifractality would refer to growing fractal sets of a
lower cutoff length scales (cf. [9]). Apparently, by rescal-
ing the total range of energy levels to a constant interval
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Fig. 4. D̄q(K) vs. q < 0 for K = 0, 0.1, ..., 0.5 and n = 200.

(independent of n), one could obtain a true multifractal
set (with zero lower cutoff length scale).

Essentially, the structure of the support of the mea-
sure p(n)

i (K) can be studied by determining the singular-
ity spectrum f(α(q,K)) of the Hölder exponents α(q,K)
characterizing this measure [1,6]. Typically, in cases of
multifractal sets, the f(α) spectra are continuous func-
tions of α. Clearly, in cases of monofractals, objects con-
sisting of finite numbers of monofractals, or nonfrac-
tal sets, the singularity spectra should be discrete. It is
well known, however, that standard multifractal meth-
ods [1,10] generate top envelopes of singularity spectra,
missing possible interior points (which do not belong to
the envelopes) [11]. Moreover, in cases of nonmultifractals
or even in cases of nonfractal sets, these methods can pro-
duce spurious points forming continuous spectra [11]. Ow-
ing to the above shortcomings, the standard multifractal
formalism cannot, in general, yield reliable qualitative
conclusions concerning possible multifractal properties
of considered measures. Nevertheless, using additionally
special diagnostic procedures, one can identify spurious
points, as well as one can detect hidden points [11]. This
enable one to judge whether a true f(α) spectrum is in a
given case continuous or not. Below, the f(α(q,K)) spec-
tra determined for the measure p(n)

i (K) by applying the
steepest descent procedure [1] will be examined with the
aid of a diagnostic procedure based on the sliding window
fractal analysis [11].

The spectra f(α(q,K)) derived for q ≥ 0, K = 0.1,
and for large numbers of spins are plotted in Figure 5. As
one can see, the exponent α corresponding to q = 0 grows
as n increases. It proves that, for n =∞ and for each finite
K, α(0,K) = ∞ and, according to the multifractal anal-
ysis [1], ∂

∂qDq(K) |q=0= −∞ in the thermodynamic limit.
Obviously, the divergence of α(0,K) for growing n reflects
the presence of length scales that diminish more rapidly
than `n ∼ 1/Mn when n increases. Numerical results ob-
tained for very large n and various α(q,K) indicate, how-
ever, that, the spectra f(α(q,K)) with q > 0 are conver-
gent for each finite K when n increases (see also Fig. 5).
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Fig. 5. The spectra f(α(q,K)) for K = 0.1 and n = 104, 2×
104, ..., 10 × 104. The inset displays a rather fast convergence
of the singularity spectra for relatively small values of α(q,K)
as n grows.

Evidently, the shape of these spectra resembles for each
K a typical form of left sided multifractal spectra [12,13].
It should be noted that, since α(0,K) =∞ in the thermo-
dynamic limit, right sides of the spectra f(α(q,K)) do not
exist. Consequently, the smooth transition of each spec-
trum to the asymptotic value f(α(q,K)) = 1 at q = 0 can
be considered as an infinite-order transition [13].

The reliability of the spectra f(α(q,K)) can be ana-
lyzed using the moving window procedure [11]. This pro-
cedure allows one to examine how the range of the Hölder
exponents derived within a window (subsupport of the
probability measure) of a given length varies as the center
point of the window moves. For system under study, the
windows are determined by the discrete index i belonging
to discrete intervals [i− s

2 , i + s
2 ], i = s

2 ,
s
2 + 1, ..., n2 −

s
2 ,

with the window length 1 < s < n
2 being a positive inte-

ger. Clearly, the extreme Hölder exponents αmin and αmax

determining widths of singularity spectra connected with
successive windows can be derived directly from the scal-
ing relation (15). The dependence of the extreme values of
α on the normalized variable x = (i− s

2 )/(n2 − s) for slid-
ing windows of the length s = 100 and for systems with
the same temperature parameter K = 0.1, but of different
sizes n = 5×103, n = 10×103, n = 15×103, is displayed in
Figure 6. It follows that, for a given K, the extreme Hölder
exponents αmin and αmax vary within the whole range of
x. The dependence of these exponents on x is especially
fast near the end points x = 0 and x = 1. This is entirely
understandable, since regions of x near these end points
correspond to low degenerated energy levels, for which the
scaling law (15) does not hold. Clearly, both the extreme
exponents take on for given K and n the smallest values
in a region of x associated with the most probable energy
levels. For each value of x, except of those values that be-
long to a relatively narrow interval corresponding to the
most probable energy levels, the indices αmin and αmax

turn out to increase as n grows. The length of the narrow
interval of values of x (at which αmin and αmax continue
to decrease when n grows) proves to diminish as n in-
creases. Consequently, a range of x for which αmin < ω1
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Fig. 6. The extreme exponents αmin and αmax as functions of
normalized centers of sliding windows of the length s = 100,
for K = 0.1 and n = 5× 103, 10× 103, 15× 103.
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Fig. 7. The width function w(x) for s = 100, K = 0.1 and
n = 105, 2× 105, ..., 10× 105.

and αmax < ω2, where ω1 and ω2 are some constants (in-
dependent of n), shrinks (for fixed K and s) when n grows.
However, the number of energy levels associated with this
range of x turns out to increase as n→∞.

It is also remarkable that, for n growing to infinity, the
width w = αmin − αmax of the singularity spectrum re-
mains nonzero for each K and for each x, except for a one
point x = x0(K) at which, however, the width vanishes
only in the case of n = ∞. Furthermore, the width func-
tion w(x) proves to be convergent when n→∞ (for each
finite K and for fixed s), as shown in Figure 7. Obviously,
behaviors of the extreme Hölder exponents and the width
of the f(α) spectrum as functions of x are qualitatively
similar for different values of K and for various window
lengths s. Generally, the extreme exponent αmax and the
width function take on for givenK, n, and x greater values
for sliding windows of longer lengths. This is reflected in
an untypical left-sided character of the spectra f(α(q,K))
and is a consequence of the fact that the scaling law (15)
is satisfied within a rather narrow range of rescaled cen-
ter points x of sliding windows. Since the width of the

singularity spectra associated with particular windows is,
in general, nonzero and both the corresponding extreme
Hölder exponents are smooth functions of x for various s
and for growing n, there is no reason to suspect that the
left-sided spectra f(α(q,K)) (with q ≥ 0) contain spuri-
ous points or hidden interior points, which would be not
captured by these spectra.

The spectra f(α(q,K)) could certainly be considered
as true multifractal spectra, if the support of the probabil-
ity measure p(n)

i (K) would be composed of infinitely many
intertwined Cantor sets, each of which being a support of
a submeasure characterized by a definite Hölder exponent
α(q,K). The corresponding submeasures might form
intertwined structures, if probabilities of the appearance
of energy levels that differ considerably from each other,
would be associated with an identical Hölder exponent,
i.e., if nonequal, in general, probabilities p

(n)
i+vi

(K) and
p

(n)
i (K) with vi → ∞ as n → ∞ would be connected to

the same exponent α. According to (5, 9, 14), one obtains
for the same values of bi(K), and hence for the same
exponent α, that vi = n

2 [gi+vi(K,n) − gi(K,n)] with
gi(K,n) satisfying the condition (11). Assuming that
gi(K,n) = ci(K) lnn

n , where ci(K) is independent of n,
one has vi = 1

2 (ci+vi − ci) lnn→∞ as n→∞. Note that
the probabilities p(n)

j (K) with i < j < vi can correspond
to different values of α, determined by different values
of bj(K). This indicates that the probability measure,
characterized by various values of the Hölder exponent,
can really create intertwined structures. The way, in
which the probabilities p(n)

i (K) identified with particular
exponents αi(K) are redefined as n grows, is established
by equations (5, 9–11). Obviously, the probabilities
p

(n)
i (K) corresponding to the same exponent α can be

different. This can easily be seen using the relations
(3–13). Then one derives

p
(n)
i (K) = u

(n)
i (K)

(
1
Mn

)αi
(19)

with

u
(n)
i (K) = 4 coshK exp[−bi(K)gi(K,n)

√
n lnn] (20)

being, in general, different for the same value of bi(K)
(for some set of the indices i). Thus, the examination of
the probability measure p(n)

i (K) as well as the analysis of
the structure of its support, especially the sliding window
analysis of the resulting singularity spectra f(α(q,K)),
suggest that these spectra can be treated as left-sided mul-
tifractal ones.

4 Conclusions

The normalized probabilities of the occupation of highly
degenerated energy levels of one-dimensional Ising sys-
tem have been proved to reveal multiscaling property
with the scaling length `n ∼ 1/Mn. The multiscaling
has been shown to be related to multifractality with re-
spect to the probability measure. Due to the existence
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of drastically different length scales characterizing this
measure, especially due to the occurrence of the length
scale `n ∼ e−n corresponding to energy levels of low de-
generacies, the resulting multifractal spectra f(α(q,K))
display the left-sided shape with 0 < α(∞,K) < ∞ and
α(0,K) =∞ for all finite K. It should be pointed out that
a more familiar form exhibit the spectra f(ᾱ(q,K)) with
ᾱ(q,K) = 1/α(q,K) [6]. These spectra have a finite width
for all K, but are not always upward convex functions of
ᾱ(q,K). The scaling features of coarse-grained probability
measure studied here have a general character and, conse-
quently, the multiscaling and the anomalous behavior of
singularity spectra can be considered as typical properties
of various systems with discrete energy spectra.
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